10 research outputs found

    The FZ Strategy to Compress the Bitmap Index for Data Warehouses

    Get PDF
    Data warehouses contain data consolidated from several operational databases and provide the historical, and summarized data which is more appropriate for analysis than detail, individual records. Fast response time is essential for on-line decision support. A bitmap index could reach this goal in read-mostly environments. For the data with high cardinality in data warehouses, a bitmap index consists of a lot of bitmap vectors, and the size of the bitmap index could be much larger than the capacity of the disk. The WAH strategy has been presented to solve the storage overhead. However, when the bit density and clustering factor of 1\u27s increase, the bit strings of the WAH strategy become less compressible. Therefore, in this paper, we propose the FZ strategy which compresses each bitmap vector to reduce the size of the storage space and provide efficient bitwise operations without decompressing these bitmap vectors. From our performance simulation, the FZ strategy could reduce the storage space more than the WAH strategy

    Recovery of human interferon alpha-2b from recombinant Escherichia coli using alcohol/salt-based aqueous two-phase systems

    Get PDF
    The purification of intracellular human recombinant interferon-alpha2b (IFN-α2b) from Escherichia coli (E. coli) was studied using alcohol/salt aqueous two-phase system (ATPS). The influences of nine biphasic systems comprising alcohol-based top phase (ethanol, 1-propanol and 2-propanol) and salt-based bottom phase (ammonium sulfate, di-potassium hydrogen phosphate and monosodium citrate) on IFN-α2b purification were studied. The results showed that the optimum condition for purification of IFN-α2b was achieved in ATPS composed of 18% (w/w) 2-propanol with 22% (w/w) ammonium sulfate in the presence of 1% (w/w) sodium chloride (NaCl). The purified IFN-α2b recorded a purification factor (PF) of 16.24 with the yield of 74.64%

    Neuron Regeneration and Proliferation Effects of Danshen and Tanshinone IIA

    Get PDF
    This study evaluates the proliferative effects of danshen and its monomer extract, tanshinone IIA, on Schwann cell proliferation. A piece of silicone rubber was guided across a 15-mm gap in the sciatic nerve of a rat. This nerve gap was then filled with different concentrations of danshen (0–100 mg/mL). The results showed that danshen increased the expressions of uPA, cyclin D1, E and ERK, JNK, and P38 MAP kinases via the FGF-2 signaling pathway in a dose-dependent manner. RSC96, Schwann cells were also administered with danshen (0, 20, 40, 60, 80, and 100 μg/mL) and tanshinone IIA (0, 2, 4, 6, 8, and 10 μg/mL). In lower concentrations, danshen and tanshinone IIA exhibited an apparent effect on Schwann cells. Similar effects were also demonstrated in the FGF-2-uPA regulating cascade and cell cycle proliferative protein results. Schwann cell migration was elevated as well. We used MAPK-signaling chemical inhibitors and identified the proliferative effects of danshen and tanshinone IIA as MAPK-signaling dependent. The results from the in vitro systems indicate that danshen and tanshinone IIA can be used to induce Schwann cell proliferation, and in vivo results potentially suggest that danshen and tanshinone IIA might enhance neuron regeneration

    Automatic Morphological Subtyping Reveals New Roles of Caspases in Mitochondrial Dynamics

    Get PDF
    Morphological dynamics of mitochondria is associated with key cellular processes related to aging and neuronal degenerative diseases, but the lack of standard quantification of mitochondrial morphology impedes systematic investigation. This paper presents an automated system for the quantification and classification of mitochondrial morphology. We discovered six morphological subtypes of mitochondria for objective quantification of mitochondrial morphology. These six subtypes are small globules, swollen globules, straight tubules, twisted tubules, branched tubules and loops. The subtyping was derived by applying consensus clustering to a huge collection of more than 200 thousand mitochondrial images extracted from 1422 micrographs of Chinese hamster ovary (CHO) cells treated with different drugs, and was validated by evidence of functional similarity reported in the literature. Quantitative statistics of subtype compositions in cells is useful for correlating drug response and mitochondrial dynamics. Combining the quantitative results with our biochemical studies about the effects of squamocin on CHO cells reveals new roles of Caspases in the regulatory mechanisms of mitochondrial dynamics. This system is not only of value to the mitochondrial field, but also applicable to the investigation of other subcellular organelle morphology

    Evaluation of the root and canal systems of maxillary molars in Taiwanese patients: A cone beam computed tomography study

    No full text
    Background: This study evaluated variations in root canal configuration in the maxillary permanent molars of Taiwanese patients by analyzing patients' cone beam computed tomography (CBCT) images. Comparisons were made among these configurations and those previously reported. This information may serve as a basis for improving the success rate of endodontic treatment. Methods: The root canal systems of 114 Taiwanese patients with bilateral maxillary first or second molars were examined using CBCT images. The number of roots, canals per root, and additional mesiobuccal (MB) canals, as well as the canal configuration were enumerated and recorded. Results: Of the 196 maxillary first molars examined, three (1.5%) had a single root, two (1.0%) had two roots, and 191 (97.5%) had three separate roots. Out of all first molar roots examined, 44% of mesiobuccal (MB) roots had a single canal and the remainder had a second MB (MB2) canal. Of the 212 maxillary second molars examined, 16 (7.1%) had a single root, 51 (24.2%) had two roots, 143 (67.8%) had three roots, and two (0.9%) had four separate roots. For the MB roots, 92.3% of three-rooted maxillary second molars had a single canal and the remainder had an MB2 canal. In all three-rooted maxillary first and second molars, each of the distal and palatal roots had one canal. Conclusions: The root canal configurations of the MB roots of maxillary molars were more varied than those of the distobuccal and palatal roots, and the root canal configurations of maxillary second molars were more varied than those of the first molars. These findings demonstrate CBCT as a useful clinical tool for endodontic diagnosis and treatment planning

    Three-Dimensional Printing of a Hybrid Bioceramic and Biopolymer Porous Scaffold for Promoting Bone Regeneration Potential

    No full text
    In this study, we proposed a three-dimensional (3D) printed porous (termed as 3DPP) scaffold composed of bioceramic (beta-tricalcium phosphate (β-TCP)) and thermoreversible biopolymer (pluronic F-127 (PF127)) that may provide bone tissue ingrowth and loading support for bone defect treatment. The investigated scaffolds were printed in three different ranges of pore sizes for comparison (3DPP-1: 150–200 μm, 3DPP-2: 250–300 μm, and 3DPP-3: 300–350 μm). The material properties and biocompatibility of the 3DPP scaffolds were characterized using scanning electron microscopy, X-ray diffractometry, contact angle goniometry, compression testing, and cell viability assay. In addition, micro-computed tomography was applied to investigate bone regeneration behavior of the 3DPP scaffolds in the mini-pig model. Analytical results showed that the 3DPP scaffolds exhibited well-defined porosity, excellent microstructural interconnectivity, and acceptable wettability (θ p p p < 0.05). Hence, the 3DPP scaffold composed of β-TCP and F-127 is a promising candidate to promote bone tissue ingrowth into the porous scaffold with decent biocompatibility. This scaffold particularly fabricated with a pore size of around 350 μm (i.e., 3DPP-3 scaffold) can provide proper loading support and promote bone regeneration in bone defects when applied in dental and orthopedic fields
    corecore